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ON THI} CONJROL, OF A LINBAR DIFFERNICE-~-DIFFERENTIAL
EQUATTON W1TH QUADRATIC COST

Harold J, Kughner
and
Daniel I, Barneu

l. Introduction,

' y(®) =

Let H be the space of n~vector valued functions
(¥1(®)ye0,¥, ()" on the reol finite interval {-r,0], r > 0, whose com-
ponents are continuous on [-r,0]. Suppose x(t) is an n-vector velued
function defined on the real intervel [-r,T}, T >0, Fix t ¢ [0,T)}, Let

denote the element of H with values x(t+p) at ¢, ¢ € [-r,0]. Let
H

4
x(+) be the solution of the delay equation

13
L

o
(1) x(t) = A(t)x(t) + B(t)x(t-r) + [ c(t,0)x(tsp)dap + D(t)u(t)
-r
where A(t), B(t), C(t,p), D(t), end the derivatives of B(t) and C(%,9)
for (t,p) € [0,T) x [-r,0], end the 'initial condition', x , is in H.
This paper is concerned with finding the control u(+) which

minimizes the quadratic functional

T
(2) V(x,,t) = £ [x' (s)M(s)x(s) + u' (s)N(s)u(s)]ds,

wiuere M(s) and N(g) are continuousf**, M(s) 2 0, and N(s) >0 for

t .
The prime ' denotes trangpose.

fJ‘r(l) is treated for simplicity, it will be obvious that replacing the
term Bx(t-r) by ZBix(t-ri) demands few changes in the development,

"™Mz20, N>0 denote that M is non-negative definite snd N is
positive definite,.




cach & in [0,T). &pcclul forms have been considered by other authors,
e.g. Krasovskii [1], however, that work is quite vague and, in particular,
the erucial fTacl that the relevant 'Ricafiti-like' equation has a solution
of the proper form or even some solution is not shown. Since the 'Ricatti!
equation is a rather complicated coupled set of first order partial differ-
ential equations, this question rcquires some treatment, Theorems 1 and 2
give the representation of V(xt,t) a8 & quadratic functional of X0
Theorem % proves %he smoothness of solutions to certain partial differential
equations, and Theorems 4 and 5 contain the basic result on iteration in
policy space. Theorem 6 is the final optimization theorem, Unfortunately,
as is common with works on functional-differential equations, some of the
calculations are somewhat tedious., Although the problem has an intrinsic
interest of its own, owing to the appearance of delays in many situations,
the authors interest in it stemmed from an attempt to analyze a problem
where u(t) was actually a functional of noise corrupted observations taken
on the interval [t-r,t], This was part of an attempt to use the theory of
stochastic delay equations to study certain approximations to non-linsar
filters, and to stabilize a system when only noise corrupted observations

are available, The latter investigation led to the consideration of the

problem of the paper. See Barnea [2].

e, A Preliminary Lemma,

Lemua 1, Let u= 0 and let the A(t), B(t), OB(t)/dt, A (t,p;/

and C(t,p) be continuous. %hen the solution x(s) has the répfééenfétfon,
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%) %(s) = K(s,8)x(t) + [ K(s,b,0)%(tip)dp
-7

where K(s,t) = 0 for s <t, K(t,t) = I, i.c identity, and X(s,t) is con-

tinuous in (s,t) for s 7 t. For Tixed 1%, it satisfies (1), as a

function of s (with wu = 0). For fixed s, it satisliecs (as a function

S Ao Y IPTTL SR WYY I,

of 1) the adjoint of (1) (with u = 0), for t 5 s, The terms XK(s,t)/s

end K(s,t)/ot are continuous for s 2 t except for a finite discon-

tinmuity at e =t + r, Also

N r
(%) K(s,t,0) = K(s,ttri@)B(trrsp) + [ K(s, tkp+p)C(t4e+p, -p)dp.
-

(The upper limit r can be replaced by min (s-t-p,r).) The first term

on the right of (4) is_zero for s <t + r + @, continuous in (s,t,p)

for sz t+ r+ 9, and its derivatives with respect to s,t,p are

continuoug for sz t + r + @, except at s = t + 2r + @, where there is

a_finite discontinuity. The second term of (4) is zero for s <t and

is continuous together with its derivatives with respect tof s,t,0 fer

T

v

sztz0, ~-rs¢ =0,

Note, ﬁ(s,t,@) =0 for s < t, For the computations of Theorem
1, it is convenlent to redefine K(s,t,p) for s « t so that (3) gives
the solution for s =z t - r, Then define ﬁ(s,t,@) = %(s,t,m) for szt

O A
and, for t - * = s <1, define the symbol | K(s,t,0)x(t+p)dp to mean
r

fo convention, if s =t + r-+ ¢, the derivative with respect to s is

a right-hand derivative, and with respeet o +t and ¢ a left-hand
derivative; i.e., the limits are taken within the segment sz t + r + o.

* mgo—
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x(8); i.e., for s <1, ﬁ(s,t,m) is the Dirac 8-function 8&(s-(t#p)). Thus

for B?Tt'"r,

O A
(%) x(8) = K(s,t)x(t) + | K(g,%,0)x(t4¢)dp.
-7
Proof, The forms (3), (4) and stalements concerning K(s,t)

follow from Halanay [5], p. 369-370. The statements ccncerning 'ﬁ(s,t,m)
are straightforwvard consequsnces of the properties K(s,t), by virtue of

the representation ().

Remark, In (1) let wu(t) teke the form

(5) () = B,(6)(8) + [ 7, (6,0)x(0)e
Then
() k() ~ A, (OX(8) + B(E)x(6x) + 1 0, (1,0)x(te0)
where
Au(t) = A(t) + D(t)Eu(t)'

C,(t,9) = C(t,9) + D(t)F,(t,9).

Let D(t), Eu(t), F,(4,9) D(t)d and aFu(t,q)),/ai; be continuous. Then,
Jemma 1 rema:fms valid, where we replace K,K by Ku’Ku’ 'resp., the kernels

corresponding to (1').

e e i e



5. Representations for the Cost.

By substituting (5) into (2), we obtain

T

Wixg, ) = [ (x (a)M, (s)%(s))ds

T (o] T (o]
5] dpx ()0, (5,9 )x(840)) + [ ds(] oo’ (s50)L (8,0)x(s))
- ) -y

/
t
+/
t
T o © .
(6) + { ds(frdrp [ apx' (s+49)G, (8,9, P)x(s+p))
- -r

T

1 + T

)

2+ T3+Tu

where the T, are the terms on the right of (6), and

Mu(s) = M(s) + E&(S)N(S)Eu(s)
(7) 1 (5,0) = EL(s)N(s)F,(5,0)

G, (5,9,p) = F! (s,9)N(s)F (s,p).

Theorem 1, Let u(t) take the form (5), and &ssume the conditions

of Lemma 1 and the remark following it. In addition, let &(t,p)/dp and

&"u(t,cp)/ap be continuous and F,(t,p) and Eu(t) tend to zero as t - T.

Let M(s) and N(s) be symmetric and continuously differentiable for

s ¢ [0,T]. 'I'hen"""H

YThe g are defined as the terms on the right of (8).

A
1254
Yoe (2) contains a terminal cost term x'(T)Zx(T), then (9), (10), (11) would

each contain one additional term (which is not of an integral form), However,

we have not been able to show that the additional terms have the smoothness
that we will require (i.e. be differentiable).



(8)

The Pu(t), Qu(t,m), Ru(t,@,p) are sums of the temms in (9), (lo), (11),

resp.

(92)

(9v)

(9¢)
(9a)

(10a)

(10b)

(10c)

Vi(xy 1) = 8) 4 Sy 8, + 8,
3 (OB (8)R() + 51 (6)] (5,0 x(ti0)ep
0
+ [ x! (ti9)Q! (,0)% ()
-r

o o
+ [ ap [ dpx' (00)R (4,0, P)x(t+0).
-r =X

T
Pul(t) i £ Kﬁ(s,t)Mu(s)Ku(s,t)ds

T o
Po(t) = i ds {rdea(s,t)Lu(s,T)Ku(s+r,t\

Pys(t) = Pvem

o) o)
s [ & [ dpK! (s+0,)G (5,9, P)K (s+p,t)
-r -r

P () =

f d
t
T
Q (6,0) = £ K! (s, 6)M, (s)K (s,t,9)ds = fK' (s,t)% (S)K (,t,9)
f
t

fodTK ' (s, t)L (s, T)K (s+,%,9)
-r

Qe (t,9) =

min[t+rip, T]

n

dsKﬁ(s,t)Ih(s,t-s+¢)

L

o ~
ds f d'rKl'l(s,1')I;u(s,'r)Ku(s+'r,t,cp)

+
ct— C""‘.‘a S T -

ds | dTK'(nPT,t)L (s T)K (s,t,0)
-r

Qu3 (tJC‘p) =

3

oy
—

ds frdTKﬁ(s+T,t)La(s:T)Ku(s,t,w)

e sagmrlf

=
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Fll

o o n
Q (Ly@) = { ds jrdoz frdm‘;{‘(ma,L)Gu(a,n:, P)K, (4P, b,0)

min[ Lt rie, T o

(104) w [ as [ clax{l(ﬂ'!*a,t)Gu(s,ft,t-aAiq))
1 ~T
T o 0 .
+ [ ds [ du [ dplt{x(s-lcz,*b)c;ﬁ(z:,m,p)Ku(s»i«rJ,t,c,p)
1 -y =Y
Th A , TN ~
(11a) Rul(t,cp,p) ” 1!’ K{l(z,t,c{))ldu(s)liu(s,t,p)ds - { K{J(s,t,rp)mu(a)}(u(s,t,p)cl:z
Rue('b,cp,p) u { ds ,[rd'r}{{i(s,t,q;)nu(s,'r)Ku(s-w,L, )

nin[tr+p, T

(11b) = f dsK) (8,1,0)7 (8, t-s+p)
t
o { ds [ dﬂ{{l(s,t,cp)llou(s,':)i{u(s~r':,+,,,p)
v oy

(1lc) Ruf.)(t,cp,p) = R, (%, 0,0)

T 0 o
R»l <T‘:(p) p) = f ds f do f dﬁﬁ' (B'I-CZ,i'a,(P)G (s,a,ﬁ)ﬁ (S»I-B,‘b, p)
wH t oy p u u u

min[ t+rsp, ttrkp, T)

it

e ct

Gu(s,t-s-%«:p,t-s-iap)ds s

min{t+r+p, T] o .
ds {rdc&{{l(s-va,t,cp)Gu(g,a,iz-s+p)
min[ t+r+p, 1] )

(114)

v [ ds [ daG, (s,0,t-8:9)K(s+a, b, p)
t -r
T o o . v
* £ ds {r do: {rdﬁK&(s+ogt,m)Gh(s,Qbﬁ)Kh(S+B,t,P)

Furihermore, the T, have the form (8) where P,Q, gnd R,

are replaced by P ,,Q . and R ., resp. P ,Q , and R  have bounded
1‘

d-rivatives in their arguments for

OftsT -rsgs0, -rspso,

fAt =0 or ¢ =r or p=0 or p=1 or t=0, vthe derivatives

are replaced by the appropriate one gided derivetives.




e

end setlefy (12), the derdvibives ore eentimeng, exeepl for the o oo
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p o derivitive of Ru('b,r.\, p) st @ = p where there mey be s finjtlc die-

T S W

centintiy
(17n) P(1) = Q (T0) » R (Typ,p) = O
. dp,, (1)
(1a2v) u ' 1 . :
T+ ALLP(8) + B (VA (8) + @ (£,0) + Q! (t,0) =
- M(t) - E{l(t)I‘.‘(t)Eu(t) n -»M‘u(tz 3

. - " 6) o 2 alu(t,fﬂ)

(125) 2B, (8)C,(8,0) + ALE)Y (6,0) + Q(6,0)A (1) 4 Bt
&u(ﬁ,f{l)
ap
+ R, (t,9,0) + Ru(’t,o,.cp,)‘s- -28! (L) (L)r, (£,9) = 2L (t,6)
r [] . . [] 2y . mu
(124) or (4,909, (t,0) + Q) (t,9)C, (t,0) + 5=(t,0,p)
%, x, |
- a.,’...(t,cp,;:)) - -aa-(t,cp,p) = -F"l(t,cp)ﬂ(t)Fu(t,p) = -Gu(t,qa,p)

(12¢) B! (1'.)3?“(1:) - Q,u(t, -r) = 0

B (£)Q, (t,9) - R, (t,-2,0) - R (t,0,-r)

+ Q&(t,({))’ﬁ(*ﬁ-} s 0
| Finally, the solution Pu(t), Q,(t,0), R, (t,9,0) is unique

PERTI S o .
w.t,t.hn.n the class oi“,symmctr:n.c: differentiable P, (t), R, (t,9,p) and
*For future reference, we note that the discontinuity in R u is .:in the
torms Ru2 and R w3 However, it is easy to verify that R 02 and Ru’j

ave differentiable in the (1,-1,-1) dircetion in the (t,0,p) sct
. .2
[O:T] x [-I‘,O] .

t

By symmetric M we meun M (1) = M(t), by symmelrie d(t,ne), we mean

G(t,p,p) = G (L,p,),

O ] Jairogt
ettt

B




differentiable Qu(t,@).

Proof. The evulnotion of the T -terms on the right of () is
stroightlovyard by mercly substitnting the expressions for x(s), x(e4)
and x(stp) from (%) into lhe Ti and separating the result into a sum

of the fowm of the right side of (8), where the Py @ and R,  are

ui?
given by (9) - (11). The right sides of (9) - (11) are obtained from
the center expressions by replecing R by its definition in terms of ¥
and the d-function, and noting thet %(s,t,@) =0 for s <%, Then (&)
follows by merely sunmming the Ti' The statement concerning the con-
tinuity of the derivatives of Pu’Qu and. Ru follow from Theorem % and
the differentisbility of M (v), L (s,0) and G (s,9,0) for 0s5s s T,
-rs¢ 0, -r£pz0,

Now, we evaluate

Lopxt ()8, ()5(8)] = [A(6)x(6)+B(b)x (5-x) + {Zeuw,mx<t+q>>awu<t>x<t>
aP. (%) .
(132) e <t><-ae-‘i-(—-~>x<t) 5 x0 (B)R, (6)[A, (6)x(6)+B(6)3 (t-r)

o ‘
+ [ C,(%,0)x(trp)ap]
-r

t

(o)
S () I Q,(0)x(t10)2p) = S (b) [ 4yt w-t)x(m)ar]
(o]

0 .
= [A (E)x(t)+B(L)x(t-r] Ircu(t,m)x(t+m)]'irQu(t,m);(t+¢)dm

(13b) b 1 ()[Q, (5,002 () - Q(, -r)x(b-r)
t aQu(t,T—t)
i [ . FRR— x(1)dT)

t-r



10
where . '
v (L, v-t) ol (t,9) &, (t,9)
- a u*? — u u "’ .
(13c) i”r S—*(7)ar = _r[ el - mx(*mp)dfp.
Simillorly,
alo o 7 a bt \
'&'Ef I dpapx! (t«:»rp)liu(t,rp,p)x(t»t'p) = a'ﬁ'"’ J d'rdox'(T)Ru(t,p-t,o-t;x(a)
-r =T t-r t-r
t .
(134) = £ do[x(t)'Ru(t,O,d-t) - x'(t-r)Ru(t,-r,a-t)]x(a)
-r

t
+ [ dwx' ()[R (t,7,0)x(t) - R (t,7,-r)x(t-r)]
t-r

t %
d.,
+ [ [ drdox' (v)[<R (t,71-t,0-1)x(0)
for o )[.36 u H )

O

f dp[x'(t)Ru(t,O,p) = x'(t~r)Ru(t,-r,p)]x(t+p)
Y .

]

)
+ f dfo’ (tm)[Ru(t.,(p,O)X(t) - Ru<t,q), -r)x(t-r)]
-l :

‘1 {:x' (89055 - 5 - IR, (6,9, P)x(bp)avde
Note (for reference in Theorems 5, €), that the representations
(13b), (13c¢), (13d) are valid if Qu(t,m) only has a uniformly bounded
derivative almost everywhere along each line in the (1,-1) direction in
the set ¢ e[-r,0}, t ¢ [0,T], and if R (%t,9,p) has only a uniformly
bounded derivative almost everywhere along each iine in the (1,-1,-1)
direction in the set % ¢ [0,T], ¢.p € [-r,0]. These conditions and the

differentiability of Pu(t) assure the differentiability (in t) of Vu(xt,t).

-




L1

Nexl, wdding (13a), twice (1%b) and (13d), and usiug the substitution (13e),
yields an expression for avu(xt,t)/at. However, BVu(xﬁ,t)/at also equals
the negative of the sum of the bracketed integrands in (6), evaluated at

s = t. The equality of these two rorms’ of avu(xt,t)/ab for all Xy, € H
and O 5 t § T, implies that the coefficients of like terms in x(t), x(t+9),
etc,, in each form must be equal, This ylelds (12), Note that, by con-

struction and Theorem 3, (12) has a smooth symmetric sclution; i.e., the terms

have continuous derivatives and Pu(s) = P&(s), Ru(t,m,p) = Ru(t,p,m) (except
thet the @,p derivatives of R are discontinuous at © = p).

Let B(t), Q(t,0), R(t,9,) be differgntiable'solutions** to (12)
with B(t), R{t,p,0) symmetric and define Z(xy,t) vy (14). Then, by re-
versing the argument leading to (12), we get d/dt[z(xt,t)] = =x' (t)M(t)x(t)
- u' (B)N(t)u(t).

[

P OA ° Al
[x' ()P(E)x(t) + x' (£)) Q(L,9)x{t+9)dp + [ x' (t+9)Q! (t,9)x(t)dp

r =Y
(k) o o A
+ [ dp [ dex' (t+9)R(t,0,0)x(t49) = Z(x,,t).
- Y
However,
Z(Xp, T) = v”(xT,T) = 0

and

.t‘

Note that V' (x,,t)/% also equals -x'(L)M(t)x(t) - u' (6)N(t)u(t).

HIn Tact, it is readily verified that we only need that Q(t,@) and

ﬁ(t,@,p) have uniformly bounded derivatives a.e,, in the (1,-1) and
(1,-1,-1) directions on the sets t ¢ [0,T], ¢ ¢ [-r,0] and % e [O,T],
®,p € [-r,0], resp, More generally, for uniqueness we only need that

R (t,9-t,p-t)/k and R, (t,p-t)/% be uniformly bounded for almost
all o,p.



12 |

7
Z(xgyb) ~ A(X,, 1) = { [x* ()M(s)x(s) + u' (s)N(s)u(s)]as

u . u
=V (xt.»t) -V (XT:T)

or, equivalently
u
(15) z(xt,t) 2 V (xt,t).

Using the identity (15), the representations (14) and (8), and the con-

tinuity of the P,?,Q,@,R,ﬁ, and symmetry of P,ﬁ and, R,ﬁ, it is easily

showm that' P (%) = B(t), Q(t,9) = Q(t,0), R (4,9,0) = R(t,0,0); thus

the uniquencess is proved. Q.E.D.

' In the sequel, it will be helpful to separate out the u-dependent H

terms in the coefficients of P, Q and R, in (12b, ¢, d) and to eliminate

the u-dependence of the kernels K, and ﬁu in (10). Write (12b, ¢, d) as

e S 1

dp (t)
(121) G A (E)P () + P_(£)A() + Q,(%,0) + Q! (£,0) = - (t)

. |
2, (8)C(5,0) + A1 (£)q, (£,0) + Q1 (6,0)A(t) + ?:u( ) p:pzau(t,cp)

+ R (5,9,0) + R,(%,0,0) = -2 (t,0)

(12c1)

Cr (t,9)Q, (t,0) + Q' (£,9)C(t,p) + %“‘:%p) ] gp?(h 20)
(121) - | 5
- 200.0) . 8 (t,0,0), | .

where .
— . 1
In Tact, under the wonker hypothesis of the last Tootnote, the equalities
hold between Qu, Q and Ru’ R almont everywherc in Gp,p) for cach ¢,

o
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Y

(16a) M_(6) = M () + BY(6)D' (6)B,(8) + B (6)D(t)E (¢)
(16v) T (6,0) = L_(6,0) + B (£)D(L)F, (t,9) + FLE (6)D" (6)Q,(£,9)

+ Q) (6,9)D(4)E, (t)]

(16c) 8, (6,0,0) = G_(t,0,0) + T} (£,0)D' (£)a, (8,0) + QL (4,0)D(5)F, (5, ).

The boundary conditions (13a,e) do not depend on u,

L] " " A
Theorem 2. Suppose the conditions of Theorem 1, Define Pu:i.’

~

Q, &nd ﬁui’ as_the terms in (9',10',11'), or equivalently, the re-

-~

spective terms in (9) - (11) with K, K, ﬁu, L, end au replacing

~

K, K

w Ko Mp Iy, and G, respr Then
4 4o b
(17) P (%) = § Py (), Q,(t,9) = § Q1 (6,0 R, (£,9,0) = § R,y (£:950)
A T ~
(9a') Pul(t) = {; Kf (s,‘b)Mu(s)K(s,t)ds
~ T 0 n
(9b') Pua(t) = £ ds {rdTK' (s,'b)Lu(s,'r)K(s-i~'r,t)
(9¢") B5(t) = PLo(6)
3 T ° ° A .
(9ar) Py (t) = { ds [ d&p [ dpK! (s+q),t)Gu(s,cp,p)K(s+p,t)
v -r -
A yN A ~
(10a') 8,1 (%,0) = [ dsk' (s,8)H, (5)K(s, t,0)
' t
A T o) . '
Qo (t,0) = 1f; ds {rd'rK' (s,t)L, (s, T)K (547, t,0)

10b!
(1007) min[ t+r4¢, T]

¥ K (8,605, (5, b-s40)ds



1

T o N
[ ds [ dTK'(£+T,t)ﬁ£(B,T)K(S,t,m)
1 -T
R T o o n
Qu (t,@) = [ ds [ do [ dpk! (s+ayt)G (s, P)K(s+p,t,0)
t -r -r

(lOC') ) Q (t,W)

R

(10d") min[t+p+r, T] ) ~
v [ ds [ doK' (s+0, )G (5,0, t-540)
-

ct

(1la') ﬁul(t,@,p) = dsK'(s t @)M (s)K(s t,p)

f
t

~» o ~ ~ ~s '

Rua(t)@;p) = £ ds f dTK'(S,ﬁ,m)Lu(S,T)K(S+T,t,D)

-
(11b') min[ t+r+p, T],,
+ [ K(s,t m)L (s,t-s+p)ds
L ,
(llC' ) §u5 (t,(P, P) = R{le(’b, p,(p)

T o o . N ~
£ ds [ da [ dpK' (s+0,t,9)G, (s,0,B)K(s+B, b, p)
-r  -r

]

A
R, (£,0,0)

m1n[t+r4w,t+r+p,T]
(11d') + [ (s t-s4p,t-8+p)ds
t

min[ t+r+p, T] ° A ~
+ [ ds [ doK' (s+0,t,0)G (5,0, t-s+p)
t : -r

min[ t+r+p, T] o L ~
N { ds [ daG (s,q,t-s49)K(s+a,t,0).
-

L
Proof, 1In the integrals (9) in the expression Z Pui(t), replace

A

L 8 , resp..

G, by M W Oy

Ku and K, by K and K, resp., and M Lu’ "

w’

A N A .
In Theorem 1, let u =0, Ly= Ly Mg=M, G, = G, With this replacement,

9]

the P . terms in (9) become the ﬁui terms in (9'). Then, by Theorem 1,

the ﬁui(t) are differentiable, and

fﬁ$ﬂ~?4$?

equivalently, (12b)). Similarly for Q (t,m) Qu(t,m) and

ui(t) = $u<t) satisfies (12b')(or

P

-

7 untane i Bl
st A

i m«w&’

W

+ i g



1D

ll»A ~ A A
§ Rui(t,m,e) S Ru(t,m,p). Then, by %he symmetry of Pu(t) and Ru(t,@,p)

and the uniqueness part of Theorem 1, we have (17). Q.E.D,

Thecrem 3. Suppose that N(t), M(t), A(t), B(t), ¢(t,9), D(t),

and Eu(t) end ¥ (t,p) satisfy the conditions of Theorem 1, Then the

Pui(t), Q.ui(b,cp) and Rui(t,:p,p) of (9) - (11) are continuously differ-

entiable in their avguments for 0 £t s T, -r s¢ £0, -r 8 p £ ¢, except

that the 9 or p derivatives of R ,(t,9,p) and Ru5(t,m,p) may br dis-

continuous at @ = p. Howcvér, R (t,9,0) has a derivative in the (1,-1,-1)

direction,

*

Proof, Since the evaluations are tedious and straightforward,
we give the details for one 'typical' temm only, namely Q (t,9). We note

only that the asserted discontinuity in Ru arises from the latter term of

2
(11b') and that it is easy to verify that (9/3t-d/) applied to this

latter term yields a continuous function, For future reference note that

the dlscontinuity is uniformly bounded if the Lu are, Write

T o
Qo (t,0) = 1{ ‘erl'l(s,t)Lu(s,T)Ku(s-w,t,cp)dsd'r

min{ t+r+p, T]
+ { K! (s,£)L, (s, t-54p)ds,

Recall that L (t,9) = E{l(t)N(t)Fu(t,cp).

Denote the gecond term of Que(t,w) by B(t,p). Observe that *%

is continuous in (t,9). Jet t+ r + ¢ > T, Then
T oL,
B(t,0)/d = 1{ KL, (8, 8) 55 (5,-519)ds

which is continuous in (t,9). For t + r + ¢ < T, we have
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iy amu
B(t,p)/ ® = K,:l(t-pr-lm,t)rld(wrw,-r) + £ Kﬁ(s,t)gﬁ—(s,t-s«p)

which is continuous in (t,p) in the desired range. In addition,
Lu(t+r+@,~r) -0 88 t+1r+0->T since Fu(t,w) -0 as t -7, Thus
B(t,p) has continuous ¢ derivatives for t,9 € [0,T] X [-r,0]. The de-
tails for B(t,p)/dt are similar and are omitted,

Write the first term of Q ,(t,9) as

T
[ h(z,0,t)ds
t

]

a(t,p)

vhere

o)

h(s,p,t) = Kﬁ(s,t)Lu(s,T)Eu(s+1,t,m)ds.

v
L}

max (t-s+p, -r)

If t -84 ¢ >0, the lower limit is replaced by zero,
For each fixed t 2 0 let k(s,p,t) satisfy (a)! k(s,p,t) is
continuous on [t,T] X [~-r,0]; (b): There is a bounded measurable function

§$(s,m,t) so that for each t and each s - not in some null set in [t,T],
T
k¢(s,¢,t) = Ok(s,p,t)/dp for almost all ¢ in [-r,0]; (c): [ k¢(s,@,t)ds
t

T T
is continuous on ([0,T] X [-r,0]. Then £ gw(s,$,t)ds = /W[ k(s,p,t)ds
t
and is continuous on [0,T] X [-r,0], Let k(s,p,t) = h(s,p,t), and note

that h(s,p,t) is continuous for each fixed +t. Let t - s+¢<-r, Then
0 X,

6, (s,9,t) = dh(s,p,t)/d¢ = [ K&(s,t)Lu(s,t)a$—(s+¢,t,¢)ds which is con-
-r

tinuous in all threc variables,

Now, let 0> % - s+ ¢ > -r, Then

s -

U

ool
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o ) ; . X e b
52<ﬁ,<{’,") e %(M””“ = K&(B:t)Lu(stt“s"@)Ku(t"”P)1’;‘?)

L YA

+ K! (8,t)L (8,7)x—(s+7,%,0)dr,

g u u ¥

The first term of &E(S,m,t) is zero since %&(t+@,t,m) = 0 and the seconi
tends to 61(3,@,t) 68 bt - 8+ 9l -r. It can now easily be verified that
(a) - (¢) hold and that o(t,p) has a continuous ¢ derivetive on [0,7] X

[-r,0]. The details for dx(t,p)/dt are similer and are omitted. Q.E.D,

4, Tteration in Policy Space,

In Theorem 4, the basic result on 'iteration in policy space', we
will require the time derivative of the funetion Vu(xt,t) evaluated on the
path corresponding to a control w (and written Vu’w(xt,t)); to be specific,

the time derivative of Vu(xt,t) along the path corresponding to w is de-

fined by

vwmm=%mmwmm+awwkmwmmw
(18)

(o}
b I % (60)R, (b0, 0)x(b+p)d0dp]
-y .Y -

where for Xx(t) = Mx(t)/dt we use the derivative evaluated along the trajectory

corresponding to w, i,e.,

(19) X(t) = A(t)x(t) + B(t)x(t-r) + n'(t)w('t) + foC(t,cp)x(t+cp)d!p.
-r

Using (19) in the calculations (13), we have
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»

v“’“(xt;c)as 20 (6)D ()R, (B)x () + &' (£)D* (%) IOQu(t,m)x(t«w)ﬂ?
-7

dp (t) ' -
+ x'(t){?t 4+ A'(t)Pu(t) + Pu(t)A(t) + Qn(t,o) + Q&(t,oijx(t)

b x(6) [ LAY B-YRQ(6,0) + 2,(£)0(5,0)
-1

(192) + A1 (6)a, (6,0) + QY (8,0)A(t)

+ R, (,9,0) + R (£,0,0)]x(t+p)d

b R (b0)[ (3/36-3/ %3/ )R, (5,0, 0)

-r =X

+ 01 (4,9)Q,(t,p) + Q' (t,9)C(t,P)Ix(t+p)dpdo,

Theorem 4, Let u have the form (5), and define Vu’w(xﬁ,t) by

(18). Assume the conditions on A, B, C, D, Ey, Fp N and M of Theorem 1,

and let N(s) be positive definite and M(s) positive semi.definite in

[0,T], and let D(t) be continuously differentisble in [0,T]. The control

w which attains the minimum in (22) has the form (5), and

o]
(202) w(t) = B (6)x(b) + [ ¥, (6,0)x(t0)d
where

B, (6) = -N"N(6)D" (8B, (¢)

P (t,0) = N1 (4)D' (£)Q,(t,0).

Ew(t) and Fw(t,m) satisfy the conditions on the E (t) and F,(t0) in

.
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Theorem 1.- Alsy \
(1) Wiz, t) & Vix,t)

for all x, ¢ H, and t ¢ (0,71,
(22)  H(xy,t) = min (V97 ,0) 4 %0 (BIM(6)x(6) + W ($)N(L)w(t)].
W

Remexrk, Note that, with w = u, the bracketed temrm in (22) is
zero by the definition of "Ju'u(xt,t) = Bvu(xt,t)/at.

Proof, In computing the minimum in (22), only the tewms

; o
%1 (6)B, (6)x(8) + 2 (8)B, (£)R(8) + 2 () [ Q (6,0)x(t+p)d

(250) '
+ W (B)N (6w (t)

or, equivalently, only the terms

i (YD (8)P, (6)(5) + 201 (80" (5) [ O (6,0)x(bkp)p
-r

(25%) + W (BYN(BY(b)

need be taken into account. The other terms in the brackets in (22) do
not contain w by (l9a), The w(t) min:imizing (23b) iz of the form
(20a), where E, end T satisfy (20b). By the hypothesis and by

Theorem 1, the coefficients Ew and Fw satisfy the smoothness



0

conditionu'r~quircd in Theorem 1 on the Eu,Fu there,
Now, for any w of the form (20), VquT,T) ) Vw(xT,T) = 0

and
T-u,w u u

The bracketed term in (22), with the minimizing w inserted, is non-
positive - since the brackcted term is zero if w is replaced by u,

Thus
T

T
0z i Vu’v(is,s)ds 4+ £ [x' (8)M(s)x(s) + w! (s)N(s)w(s)]ds

or

u u W . w v
ozV (J(T,T) -V (xt’t) + V (x-t)t) -V (XT,T)= -Vu(xt,'b) + Vw(xt,t)

and (21) holds. Q.E.D.

Suppose the conditions on A, B, ¢, D, N and’ M of Theorem k4,

Iet Uy satisty the conditions in the remarx below Lemma 1, Define the
improved control u, recursively in terms of Wy by the method of
Theorem U, Then, by Theorem 4 (where we write E =E , F =F_,

u n n

=y n)




2l

@) oy = Bp(8)(5) + 1 T, (60)x(10)
B, (5) = N (6)Dr (6)B, (t)

@) P (6,0) = N (6)D! () (%,0)

end, for all % e [0,T] and x,_ € H,

(26) P (x, 1) 7 P, b)s

Next, it is shown that (2C) implies that the PsQ,R, ~and

Ur. converge,

Theorem 5., Assume the conditions of Theorem Y, The Pn(t),

Qh(t,m), Rn(t,m,p), En(t), and Fn(t,m) are uniformly bounded ard con-

verge pointwise to functions P(t), Q(t,p), R(t,p,p), E(t) and F(t,0),

resp, P(t) and R(%t,9,p) ave symmetric and

Vix,t) = %' (4)P(6)x(t) + x'(t)f”Q(t,@)x(t«$)d¢

o .
(er) + [ x' (t9)Q (1,9)x(t)dp
5 ¢ . ’

0o O

+ [ [ x'(H)R(,q, p)x(t+o)dodp
-r -7

where u 3Jjs the limit of the un:
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() a(b) = B(6)x(t) + [ F(t,0)x(brp)dp.
-r

Furthermore, *he ﬁn, 6n and ﬁn in (9') (11') converge pointwise and

are uniformly bounded, and the P, @ and R are the limits of the =uvs

a—

of the Pois Qni and R 4» LESD.

Finally, let v be the (1,-1) direction in the (t,p) set

[0,T] X [-r,0], and o the (1,-1,-1) direction in the (t,p,p) set

[0,T] X [-r,0]% Then the derivatives JP(t)/dt, A(t,p)/d, R(%,0,p)/d

exist and satisfy

() S 4 ar(6)B(E) + P(E)AS) + Q(5,0) + @ (t,0) = -fi(t)

22 0D 4 op(6)c(t,0) + A (8)Q(6,0) + Q' (6,0)A(E)

(29%) T
.+ R(%,9,0) + R(%,0,0) = -2L(t,p)

(250) 3 B0 4 g (5,0)a(8,0) + ' (6,0)0(t,0) = -B(5,0,0)

A A A A A A
where the M, L and G are the M, G, L,, with B eand F_ replaced by

their limit., Also

B' (6)P(t) - Q(t,-r) = O
() B0 - R(,-,0) - B (6,9,-7)
+ Q' (t,9)B(t) = O,

® (6)/3%, X_(4,0)/> and R (t,0,0)/3" converge to ;(t)/3t,
R(t,9)/d and &R(t,9,)/d, resp.

- ! . 4

g Wik i,

g 4
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Proof, The other statements follow readily from the uniform

‘boundedness and convergence of the Py @ end R eand Theorems 1 and 2,

hence only this will be showm,

We note only that (3/3t-3/3)Q (t,0) = A2 X _(t,0)/d, end
(9/36-0/ H-d/ )R (%,9,p) = N3 R (t,9,0)/d. These derivatives converge
if the P, Q, end R do, and are uniformly bounded by (12) and (12'),
If the P, Q end R and their (%,v,0, resp.) derivatives all converge

then the (t,r,o, resp,) derivatives of the limits cre the limits of the
(t,r,0, resp,) derivatives, In (26), let x(t#p) = O for ¢ # O. Then (26)
implies that x'Pn_'_l(t)x §x'Pn(t)x for any vector x. Hence, Pn(‘l:) con-
verges pointwise to a symmetric measurable matrix P(t). Since the diagonal

(t), the

elements pn,ii(t) are non-increasing, and |p ()] = mix Pn, 11

n,ij
Pn(t) are uniformly bounded,

Let x(p) be any continuous function on [-r,0] with x(0) = O,

Then, for such x(p), (26) implies that

o o o o .
(30) [ | xt (@R, (t,0,0)x(p)dpde 5 [ [ x' ()R (t,p,p)x(p)dpdp.

-r -r -0 -0 :
By the continuity of the Rn(‘c,q),p), (30) holds if x(p) is a Dirac
5-function, In parti}cular, if -r<@, <0, -r<p <0 and x(p) =
xb(cp'-cpo) + ya‘(cp-po), then (30) and the fact that R! (t,9,0) = R (%,0,0)

yields

(1) x'Rn*“l(i"""(‘)o-’q’c)):'{ oy Rn+l(t’ Po? po)y ¥ 2x'Rn—t-lﬁ:'-'cpo’ po)y
31 ' v [
s X'Rn(t;q)o)q)o)x + Y'Rn(t, Pos po)y + ex'Rn(“:(Po’ po)y
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But, by continuity of the R (t,p,0), (31) holds for eny ¢_, A, in [-r,0],
Let y = 0., Then, as shown for the P, (31) implics that the Rn(ﬁ,¢,¢)
arc uniformly bounded and converge to some R(t,p,p). Using this and (31)
and the arbitrariness of x,y dimplies that the R (t,9,0) are uniformly
bounded end that R (t,p,p) converges to some R(t,p,p). By similar reason-

ing, (20) implies that, for each ¢_ e [-r,0],

(32) X'P e (0% + 210 (6,0 )7 + ¥Ry (%0,0,)Y
£ x'P_(t)x + 2x'Q (t,9,) + y'Rn(t,@o,mo)y.

Using (37) and the conclusions concerning Pn and Rn’ we may deduce that

the Qn+l(t,m) converges to some Q(t,p) and are uniformly bounded. Q.E.D.

Corollary., For any control w(t) which gives bounded continuous

paths x(t), and which is bounded for any bounded continuous initial condition
. LU W
Vu’w(xt,t) exists and V" (xt,t) converges to it for any continuous initial

condition, The class of w(t) includes all controls which are linear in X

and have bounded coefficients,.

Note, Recall that Vu’w(xt,t) is the time derivative of Vu(xt,t)

along X, paths corresponding to the control w,

u
| . n ~
Proof, Since V (xt,t) ~converges to Vu(xt,t) for any continuous
o U W
initial condition, we only need to show that V ° (xt,t} is uniformly bounded
u_,w :
(in n) =nd converges for any continuous initial condition. ¥ ™ (xt,t) is

: u_,w
given by (19a) with u  replacing u , and Theorem 5 implies that T (xt,t)

converges., Q.E.D.

vt e hmptt ot b

e



"5, The Optimality Theorem.

Theorem 6, Let w(x,t) be any control for which a solution tn

(1) is defined on [0,T] for any initial condition, and let u be given

by (28), Then Vu(xt,t) 3 Vw(xt,t) for all t, and initial conditions x,.

Let u=w and E and F_ be given by (28). Then the set of equations

(29) has a unique solution (for symmetric P(t) and R(t,9p,p)) and de-

termines thevggtimal control w.

Proof. Calculating the minimizing w in (32) (see Theorem 4 for

terminology)

(32) min [V (x,,t) + x' (B)M(E)x(t) + w' (£)N(t)w(t)]
w

yields (see (19a))

o
Wlrgy ) = N (B)[P(5(8) + ] Q(6,0)x(649)a0],

which is exactly u. Also the bracketed term in (32) is zero if u replaces

w, Thus, for any u# w, we have
VO, t) + x! (B)M(E)x(t) + w! (8)N(t)w(t) 2.0
or

T T
= { T (x ,5)as + i [x! (s)M(s)x(s) + w' (s)N(s)w(s)]ds

o -
A

Vg, t) + VO, T) + VW(x,t) - V(xy,T)
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or, equivalently, Vw(xt,t) z Vu(xt,t). The last sentence of the Theorem

follows from Thecorems 5 and 2, Q,E.D.

P
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